【动画】带你了解,何为网络安全“攻击面管理”******
【2022年国家网络宣传周系列科普】
近年来,新兴技术迅速发展带动了网络资产边界快速拓展,也增加了企业资产暴露面,而基于供应链的新型攻击则大大降低了攻击成本。在多重因素的驱动下,网络安全防御策略也在与时俱进,攻击面管理也开始被行业所关注。让我们一起了解一下攻击面管理的小知识吧。
什么是攻击面?
近日发布的《中国攻击面管理市场研究报告》(以下简称研究报告)指出,攻击面是指未经授权即能访问和利用企业数字资产的所有潜在入口的总和。
其中,包括未经授权的可访问的硬件、软件、云资产和数据资产等,同样也包括人员管理、技术管理、业务流程存在的安全弱点和缺陷等,即存在可能会被攻击者利用并造成损失的潜在风险。
但不是所有资产暴露面都可以成为攻击面,只有可利用暴露面叠加攻击向量才形成了攻击面。
什么是攻击面管理?
攻击面管理是一种从攻击者的角度对企业数字资产攻击面进行检测发现、分析研判、情报预警、响应处置和持续监控的资产安全性管理方法,其最大特性就是以外部攻击者视角来审视企业所有资产可被利用的攻击可能性。
主要包含外部攻击面管理(EASM)、网络资产攻击面管理(CAASM)、数字风险保护服务(DRPS)等内容。
什么是攻击面管理框架体系?
攻击面管理框架体系自下向上分别为基础技术、安全能力和应用场景。基础技术为支撑攻击面管理的技术能力集合,多种技术组合形成攻击面管理的能力体系,根据不同的业务场景需求采用不同的能力组合,形成不同的应用场景下的攻击面管理解决方案,为用户提供有针对性的攻击面闭环管理能力。
什么是攻击面管理成熟度模型?
研究报告中还提到了建立攻击面管理的成熟度模型,主要是工具阶段的被动防御、平台阶段的主动防御、流程化阶段的对抗防御、先知阶段的优先防御四个层级;提出了暴露面获取、脆弱点发现、攻击面挖掘、情报获取能力等攻击面管理要具备的12个能力域,从检测发现、分析研判、情报预警、响应运营的闭环管控过程分解了响应的29个能力子项,从子能力的具备和完善情况来评价攻击面管理的有效性。
发展前景怎么看?
目前,国内外厂商如华云安、360政企安全、Mandiant、CyCoginito、等一大批传统网络安全团队,正在进入攻击面管理创新领域。未来攻击面管理将从传统场景扩展到新兴技术场景,并提供跨领域、跨技术平台的数字资产及其攻击面管理能力,更关注企业内部业务风险和第三方风险的管理,为用户提供统一的攻击面管理入口,并提供一致的安全运营体验。
光明网、华云安 联合出品
监制:张宁、李政葳策划:孔繁鑫制作/配音:雷渺鑫
AI创新链产业链融合发展 赋能数字经济新时代《中国人工智能专利技术分析报告(2022)》发布******
2022年12月,国家工业信息安全发展研究中心、工信部电子知识产权中心发布《AI创新链产业链融合发展赋能数字经济新时代—中国人工智能专利技术分析报告(2022)》,这是中心连续第5年就中国人工智能专利技术发展情况发布报告。
在新一轮科技革命和产业变革的大背景下,人工智能创新链产业链“双链”融合是释放数字化叠加倍增效应、驱动数字经济智能化跃升、打造产业综合竞争优势的必然路径。《报告》基于人工智能高价值专利增强创新链活力和助力产业链升级的角度,对深度学习、智能云、计算机视觉、智能语音、自然语言处理等十大技术领域进行专利申请趋势和分布构成分析,从“创造力”“保护力”“运用力”“竞争力”“影响力”五大方面对人工智能创新主体进行专利创新评价,研究人工智能专利如何高效助力各类“智慧+”应用场景落地,并对未来新兴人工智能技术应用和专利布局趋势作出研判。
图1 人工智能创新链产业链融合发展图谱
《报告》对人工智能高价值专利如何为创新链产业链融合发展保障护航进行了定量和定性分析。从行业公认的能够直观体现高价值专利的几个因素来看,自2011年、2012年开始,人工智能领域的中国专利奖占比逐年提高、专利许可转让数量呈上升趋势、专利诉讼遍及多个应用场景,展现了高价值专利对技术产业应用相辅相成的走势。
十大基础技术领域的专利数量稳步增长,极大激发AI创新链活力。深度学习、智能云、计算机视觉、智能语音、自然语言处理、大数据、知识图谱、智能推荐、智能芯片、量子计算等智能技术构成了人工智能创新链技术底座,也是产业链应用的基础技术。在技术与政策双红利的推动下,2016-2021年深度学习专利申请年均复合增长率达到53%,对人工智能的引领作用开始逐步凸显;相比之下,智能语音、自然语言处理、大数据、知识图谱和智能推荐领域的专利申请呈现稳步增长的态势,其中2021年自然语言处理的专利申请量仅次于深度学习、智能云和计算机视觉,发展势头强劲;智能芯片和量子计算由于起步相对较晚,相关专利储备较少,仍处于技术加速积累的阶段。国内创新主体也纷纷展开专利布局,不断增强市场竞争实力。例如百度公司在深度学习、智能云和智能驾驶等多个领域继续保持领先优势,寒武纪、浪潮和华为在智能芯片领域展现了充分的专注度和科研实力,清华大学、浙江大学等高校也在计算机视觉和自然语言处理等领域投入更多研发资源,成为基础攻关的重要力量。
图2 AI创新链十大基础技术专利申请趋势和分布构成
AI创新主体展现积极创新面貌,中小企业为产业发展增添新力量。从创新主体的申请量排名上看,百度、腾讯、国家电网、华为位列前四,专利申请数量均突破10000件,是我国AI领域技术创新的主力军。从专利授权量上看,仍然是上述四家企业位居前列,且百度公司专利申请量和授权专利持有量均排名第一。此外,腾讯专利2017-2020年腾讯专利申请年均复合增长率高达70%,在AI领域前四创新主体中申请量增速排名第一。从授权专利占比上看,申请量排名第七的清华大学和第九的浙江大学,均以45%的授权专利占比排名前两位。作为技术创新的重要源泉和吸纳劳动力就业的重要载体,大量中小企业也积极涌入人工智能赛道,在创新链一侧,我国人工智能领域企业主体共申请专利超过110万件,中小企业专利贡献超过90%。从产业链看,AI技术在中小企业中的普及率超过40%,语音识别、智能制造等技术在中小企业应用广泛,助力中小企业升级改造和智能化应用。
图3 创新链前十创新主体专利申请量和授权量
AI核心技术领域高价值专利集聚明显,产学研合作稳步推进。当前,智能云和深度学习是高价值专利数量最多的两个领域,百度得益于更早地投入与布局,展现专利申请数量与质量同步提升的发展态势。其他创新主体也结合自身业务发展方向,在不同的基础技术领域进行了有针对性的布局,如国家电网在深度学习和大数据领域,浪潮集团在智能云,阿里巴巴在智能推荐,平安科技在自然语言处理和计算机视觉都保持着创新优势。高等院校在人工智能领域技术创新活跃,涌现了大量专利成果,并通过与企业成立联合实验室和技术研发中心等方式,加快产学研用协同创新进程。截至2022年9月,我国人工智能领域产学研联合申请专利数量超2万余件,其中发明专利占比约90%,整体呈上升趋势增长,产业应用较为广泛。
图4 中国AI创新主体高价值专利技术布局
图5 AI领域产学研联合申请专利发展趋势图
AI专利助力新兴应用场景落地,推动产业链转型升级。目前,人工智能创新链的产业化应用主要集中在智慧城市、智慧交通、智慧医疗、智慧金融、智慧工业和智慧教育等领域。从技术应用的成熟度来看,不同AI技术在不同场景的应用呈现出阶梯式发展的态势。智慧工业是当前各创新主体主要布局的技术应用场景,AI专利申请量达到65万余件,其次就是智慧金融,专利申请量为30万余件。其中也涌现出“海淀城市大脑”“灵医智惠AI医疗品牌”“智慧交通解决方案TrafficGo2.0”“普惠金融人工智能开放平台”等众多优秀实践案例,推动高端智能技术与行业的融合发展。
“智慧+”场景应用创造出更多产业增长点,新兴人工智能技术生成数字经济发展新动能。AI在城市、交通、医疗、教育及工业等场景的融合应用加速,不断催生新业态新模式新产业。以智慧工业为例,将工业互联网、人工智能等在内的智能制造新技术与工具,集成到工业生产流程中,正在引领我国工业数字化新生态。报告显示,截至2022年9月,我国智慧工业领域申请专利共计65万余件。百度公司以近9000件专利总数位居第一,国家电网位居第二,其余创新主体专利申请量差距不大,发展潜力较强,各创新主体在智慧工业领域的专利布局积极竞争,难以拉开较大差距。与此同时,基于人工智能的深度学习、内容生成,语音、视觉识别技术越来越成熟,以元宇宙和数字人技术为代表的新兴技术,也迎来了专利的快速积累阶段,百度、腾讯、华为等企业积极开展前沿专利布局,探索人机交互发展和应用,助力数字经济高质量发展。
图6 中国元宇宙专利主要申请人排名
图7 中国数字人专利技术申请-公开趋势
《报告》结合当前人工智能知识产权生态建设和全产业链专利布局情况,对产业高质量可持续发展提出总结与展望。人工智能是新一轮科技革命和产业变革的重要驱动力量,发展人工智能是支撑科技自立自强、实现高质量发展的重要战略。党的二十大报告提出,推动战略性新兴产业融合集群发展,构建新一代信息技术、人工智能、生物技术、新能源、新材料、高端装备、绿色环保等一批新的增长引擎。当前,人工智能技术与5G、云计算、大数据的融合发展已将成为推动数字经济发展的动能源泉,今后将进一步与其他数字技术相互碰撞出全新的科技驱动力。随着人工智能创新发展跨入新的历史阶段,专利申请总量突破百万件,专利申请趋势仍在快速增长,技术人才规模不断扩大,产业融合广泛深入,应当在底层关键技术突破、建设知识产权生态、大中小企业共同完善专利布局、开辟更广泛应用场景等方面发力,实现创新链与产业链的协同发展。
(文图:赵筱尘 巫邓炎)